A tool to construct HDR-images from a series of exposures.

haader.cpp 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. #include <iostream>
  2. #include <fstream>
  3. #include <algorithm>
  4. #include <clocale>
  5. #include <stdlib.h>
  6. #include <time.h>
  7. #include <math.h>
  8. #include "haader.h"
  9. using namespace std;
  10. using namespace haader;
  11. int ResponseFunction::lookup(double value) const {
  12. // + 0.5 for rounding to nearest integer
  13. int bin = (double)m_lookup_table.size() * (value - m_min_value) * m_recip_range + 0.5;
  14. if (bin < 0) {
  15. return 0;
  16. } else if ((unsigned int)bin >= m_lookup_table.size()) {
  17. return 255;
  18. } else {
  19. return m_lookup_table[bin];
  20. }
  21. }
  22. void ResponseFunction::to_csv_stream(ostream &stream) const {
  23. // Set locale. Numbers should have a decimal point (not a comma)
  24. std::setlocale(LC_NUMERIC, "C");
  25. unsigned int size = m_lookup_table.size();
  26. double recip_size = 1.0 / (double)(size - 1);
  27. for (unsigned int i = 0; i < size; i++) {
  28. double x = m_min_value + i * recip_size * (m_max_value - m_min_value);
  29. int y = m_lookup_table[i];
  30. stream << x << ',' << y << endl;
  31. }
  32. }
  33. double InverseResponseFunction::lookup(int index) const {
  34. return m_lookup_table[index];
  35. }
  36. int InverseResponseFunction::inverse_lookup(double value) const {
  37. if (value <= m_lookup_table[0]) {
  38. return 0;
  39. }
  40. if (value >= m_lookup_table[255]) {
  41. return 255;
  42. }
  43. for (unsigned int i = 1; i < 256; i++) {
  44. if (value > m_lookup_table[i - 1] && value <= m_lookup_table[i]) {
  45. double diff_a = value - m_lookup_table[i - 1];
  46. double diff_b = m_lookup_table[i] - value;
  47. if (diff_a < diff_b) {
  48. return i - 1;
  49. } else {
  50. return i;
  51. }
  52. }
  53. }
  54. // should not happen
  55. return 0;
  56. }
  57. ResponseFunction InverseResponseFunction::to_response_function(int bins) {
  58. if (!is_monotonic()) {
  59. cerr << "InverseResponseFunction::to_response_function: not monotonic." << endl;
  60. return ResponseFunction();
  61. }
  62. double min_value = m_lookup_table[0];
  63. double max_value = m_lookup_table[m_lookup_table.size() - 1];
  64. ResponseFunction rf;
  65. rf.m_min_value = min_value;
  66. rf.m_max_value = max_value;
  67. rf.m_recip_range = 1.0 / (max_value - min_value);
  68. rf.m_lookup_table.resize(bins);
  69. //TODO reduce quadratic complexity to linear complexity
  70. for (int i = 0; i < bins; i++) {
  71. double y = min_value + ((max_value - min_value) * i) / (double)(bins - 1.0);
  72. rf.m_lookup_table[i] = inverse_lookup(y);
  73. }
  74. return rf;
  75. }
  76. void InverseResponseFunction::to_csv_stream(ostream &stream) const {
  77. unsigned int size = m_lookup_table.size();
  78. for (unsigned int i = 0; i < size; i++) {
  79. stream << i << ',' << m_lookup_table[i] << endl;
  80. }
  81. }
  82. bool InverseResponseFunction::repair() {
  83. // Fill missing values
  84. fill_zeros();
  85. if (is_monotonic()) {
  86. return true;
  87. }
  88. for (unsigned int i = 0; i < 128; i++) {
  89. cout << "low pass filter " << i + 1 << endl;
  90. low_pass_filter();
  91. if (is_monotonic()) {
  92. // repair success
  93. // offset values so that m_lookup_table[128] is 0.0 again
  94. double offset = -m_lookup_table[128];
  95. for (unsigned int i = 0; i < 256; i++) {
  96. m_lookup_table[i] += offset;
  97. }
  98. return true;
  99. }
  100. }
  101. // repair failed
  102. return false;
  103. }
  104. void InverseResponseFunction::fill_zeros() {
  105. //TODO test correctness
  106. // fill at front
  107. if (m_lookup_table[0] == 0) {
  108. for (unsigned int i = 0; i < 128; i++) {
  109. if (m_lookup_table[i] != 0.0) {
  110. for (unsigned int k = 0; k <= i; k++) {
  111. m_lookup_table[k] = m_lookup_table[i];
  112. }
  113. break;
  114. }
  115. }
  116. }
  117. // fill at back
  118. if (m_lookup_table[255] == 0) {
  119. for (unsigned int i = 255; i > 128; i--) {
  120. if (m_lookup_table[i] != 0.0) {
  121. for (unsigned int k = 255; k >= i; k--) {
  122. m_lookup_table[k] = m_lookup_table[i];
  123. }
  124. break;
  125. }
  126. }
  127. }
  128. {
  129. bool inside_zeros = false;
  130. int start_index = 0;
  131. for (unsigned int i = 1; i < 256; i++) {
  132. if (m_lookup_table[i] == 0.0 && !inside_zeros && i != 128) {
  133. start_index = i;
  134. inside_zeros = true;
  135. } else if ((m_lookup_table[i] != 0.0 || i == 128) && inside_zeros) {
  136. inside_zeros = false;
  137. double a_val = m_lookup_table[start_index - 1];
  138. double b_val = m_lookup_table[i];
  139. for (unsigned int k = start_index; k < i; k++) {
  140. double t = (double)(k - start_index + 1) / (double)(i - start_index + 1);
  141. m_lookup_table[k] = (1.0 - t) * a_val + t * b_val;
  142. }
  143. }
  144. }
  145. }
  146. }
  147. void InverseResponseFunction::low_pass_filter() {
  148. vector<double> newvals;
  149. newvals.resize(256);
  150. newvals[0] = m_lookup_table[0];
  151. newvals[255] = m_lookup_table[255];
  152. for (unsigned int i = 1; i < 255; i++) {
  153. newvals[i] = 0.25 * m_lookup_table[i - 1] + 0.5 * m_lookup_table[i] + 0.25 * m_lookup_table[i + 1];
  154. }
  155. for (unsigned int i = 0; i < 256; i++) {
  156. m_lookup_table[i] = newvals[i];
  157. }
  158. }
  159. bool InverseResponseFunction::is_monotonic() {
  160. for (unsigned int i = 1; i < 256; i++) {
  161. if (m_lookup_table[i - 1] > m_lookup_table[i]) {
  162. return false;
  163. }
  164. }
  165. return true;
  166. }
  167. HdrImage::HdrImage():
  168. m_width(0),
  169. m_height(0),
  170. m_components(0)
  171. {
  172. }
  173. Image HdrImage::get_log_image() {
  174. if (m_image_data.size() == 0) {
  175. return Image();
  176. }
  177. Image output;
  178. output.m_image_data.resize(m_image_data.size());
  179. output.m_width = m_width;
  180. output.m_height = m_height;
  181. output.m_components = m_components;
  182. double min_value = m_image_data[0];
  183. double max_value = m_image_data[0];
  184. unsigned int size = m_image_data.size();
  185. for (unsigned int i = 1; i < size; i++) {
  186. double val = m_image_data[i];
  187. if (val < min_value) {
  188. min_value = val;
  189. }
  190. if (val > max_value) {
  191. max_value = val;
  192. }
  193. }
  194. double scale = 256.0 / (max_value - min_value);
  195. for (unsigned int i = 0; i < size; i++) {
  196. output.m_image_data[i] = (int)((m_image_data[i] - min_value) * scale);
  197. }
  198. return output;
  199. }
  200. Image HdrImage::expose(double exposure_time, const ResponseFunction &rf, double compression) {
  201. if (m_image_data.size() == 0) {
  202. return Image();
  203. }
  204. Image output;
  205. output.m_image_data.resize(m_image_data.size());
  206. output.m_width = m_width;
  207. output.m_height = m_height;
  208. output.m_components = m_components;
  209. double log_exposure = log(exposure_time);
  210. unsigned int size = m_image_data.size();
  211. for (unsigned int i = 0; i < size; i++) {
  212. output.m_image_data[i] = rf.lookup((m_image_data[i] + log_exposure) * compression);
  213. }
  214. return output;
  215. }
  216. HdrImageStack::HdrImageStack() {
  217. }
  218. bool HdrImageStack::read_from_files(char * const* file_paths, int number_of_paths) {
  219. m_images.clear();
  220. if (number_of_paths < 0) {
  221. cerr << "HdrImageStack::read_from_files: number_of_paths is negative" << endl;
  222. return false;
  223. }
  224. for (int i = 0; i < number_of_paths; i++) {
  225. m_images.push_back(Image());
  226. if (m_images[i].read_from_file(file_paths[i])) {
  227. cout << "Read \"" << file_paths[i] << "\"" << endl;
  228. if (!m_images[0].has_equal_dimensions(m_images[i])) {
  229. cerr << "HdrImageStack::read_from_files: Dimensions do not match (\""
  230. << file_paths[i]
  231. << "\")"
  232. << endl;
  233. return false;
  234. }
  235. if (m_images[i].get_exposure_time() == 0.0) {
  236. cerr << "HdrImageStack::read_from_files: Could not get exposure time (\""
  237. << file_paths[i]
  238. << "\")"
  239. << endl;
  240. return false;
  241. }
  242. } else {
  243. return false;
  244. }
  245. }
  246. sort_by_exposure();
  247. return true;
  248. }
  249. bool HdrImageStack::add_from_file_path(const char* file_path) {
  250. unsigned int i = m_images.size();
  251. m_images.push_back(Image());
  252. if (m_images[i].read_from_file(file_path)) {
  253. cout << "Read \"" << file_path << "\"" << endl;
  254. if (!m_images[0].has_equal_dimensions(m_images[i])) {
  255. cerr << "HdrImageStack::add_from_file_path: Dimensions do not match (\""
  256. << file_path
  257. << "\")"
  258. << endl;
  259. return false;
  260. }
  261. if (m_images[i].get_exposure_time() == 0.0) {
  262. cerr << "HdrImageStack::read_from_files: Could not get exposure time (\""
  263. << file_path
  264. << "\")"
  265. << endl;
  266. return false;
  267. }
  268. } else {
  269. return false;
  270. }
  271. sort_by_exposure();
  272. return true;
  273. }
  274. bool HdrImageStack::get_average_image_slow(Image &output) {
  275. if (m_images.size() == 0) {
  276. return false;
  277. }
  278. output.m_image_data.resize(m_images[0].m_image_data.size());
  279. output.m_width = m_images[0].m_width;
  280. output.m_height = m_images[0].m_height;
  281. output.m_components = m_images[0].m_components;
  282. unsigned int bytes_size = m_images[0].m_image_data.size();
  283. unsigned int images_size = m_images.size();
  284. for (unsigned int i = 0; i < bytes_size; i++) {
  285. int v = 0;
  286. for (unsigned int k = 0; k < images_size; k++) {
  287. v += m_images[k].m_image_data[i];
  288. }
  289. output.m_image_data[i] = v / (int)images_size;
  290. }
  291. return true;
  292. }
  293. bool HdrImageStack::get_average_image(Image &output) {
  294. if (m_images.size() == 0) {
  295. return false;
  296. }
  297. output.m_image_data.resize(m_images[0].m_image_data.size());
  298. output.m_width = m_images[0].m_width;
  299. output.m_height = m_images[0].m_height;
  300. output.m_components = m_images[0].m_components;
  301. unsigned int bytes_size = m_images[0].m_image_data.size();
  302. unsigned int images_size = m_images.size();
  303. const unsigned int buf_size = 128;
  304. int buf[buf_size];
  305. for (unsigned int i = 0; i + buf_size <= bytes_size; i += buf_size) {
  306. for (unsigned int m = 0; m < buf_size; m++) {
  307. buf[m] = m_images[0].m_image_data[i + m];
  308. }
  309. for (unsigned int k = 1; k < images_size; k++) {
  310. for (unsigned int m = 0; m < buf_size; m++) {
  311. buf[m] += m_images[k].m_image_data[i + m];
  312. }
  313. }
  314. for (unsigned int m = 0; m < buf_size; m++) {
  315. output.m_image_data[i + m] = buf[m] / images_size;
  316. }
  317. }
  318. // TODO test this with an image that has prime numbered dimensions
  319. unsigned int rest = bytes_size % buf_size;
  320. for (unsigned int i = bytes_size - rest; i < bytes_size; i++) {
  321. int v = 0;
  322. for (unsigned int k = 0; k < images_size; k++) {
  323. v += m_images[k].m_image_data[i];
  324. }
  325. output.m_image_data[i] = v / (int)images_size;
  326. }
  327. return true;
  328. }
  329. bool HdrImageStack::get_inverse_response_function(InverseResponseFunction &output, unsigned int num_samples) {
  330. if (m_images.size() == 0) {
  331. cerr << "HdrImageStack::get_inverse_response_function: There are no images." << endl;
  332. return false;
  333. }
  334. srand(time(0));
  335. unsigned int images_size = m_images.size();
  336. unsigned int c = m_images[0].m_components;
  337. unsigned int width = m_images[0].m_width;
  338. unsigned int height = m_images[0].m_height;
  339. vector<vector<double> > resp;
  340. resp.resize(256);
  341. for (unsigned int i = 0; i < num_samples; i++) {
  342. vector<int> values;
  343. vector<double> exposure_times;
  344. unsigned int x = rand() % width;
  345. unsigned int y = rand() % height;
  346. unsigned int index = (y * width + x) * c;
  347. for (unsigned int k = 0; k < images_size; k++) {
  348. int val = m_images[k].m_image_data[index];
  349. if (val == 255) {
  350. break;
  351. }
  352. values.push_back(val);
  353. exposure_times.push_back(log(m_images[k].get_exposure_time()));
  354. }
  355. if (values.size() > 0 && values[0] < 128 && values[values.size() - 1] > 128) {
  356. double offset = 0.0;
  357. for (unsigned int k = 0; k < values.size(); k++) {
  358. if (values[k] == 128) {
  359. offset = -exposure_times[k];
  360. break;
  361. } else if (values[k] > 128) {
  362. double delta_val = values[k] - values[k -1];
  363. double t = (double)(128 - values[k - 1]) / delta_val;
  364. offset = -((1.0 - t) * exposure_times[k - 1] + t * exposure_times[k]);
  365. break;
  366. }
  367. }
  368. for (unsigned int k = 0; k < values.size(); k++) {
  369. resp[values[k]].push_back(exposure_times[k] + offset);
  370. }
  371. }
  372. }
  373. output.m_lookup_table.resize(256);
  374. for (unsigned int i = 0; i < 256; i++) {
  375. double avg = 0.0;
  376. for (unsigned int k = 0; k < resp[i].size(); k++) {
  377. avg += resp[i][k];
  378. }
  379. if (resp[i].size() > 0) {
  380. output.m_lookup_table[i] = avg / (double)resp[i].size();
  381. } else {
  382. output.m_lookup_table[i] = 0.0;
  383. }
  384. }
  385. for (unsigned int i = 0; i < 256; i++) {
  386. double avg = 0.0;
  387. for (unsigned int k = 0; k < resp[i].size(); k++) {
  388. avg += resp[i][k];
  389. }
  390. if (resp[i].size() > 0) {
  391. output.m_lookup_table[i] = avg / (double)resp[i].size();
  392. } else {
  393. output.m_lookup_table[i] = 0.0;
  394. }
  395. }
  396. if (output.repair()) {
  397. cout << "Inverse response function" << endl;
  398. cout << endl;
  399. for (unsigned int i = 0; i < 256; i++) {
  400. cout << i << "," << output.m_lookup_table[i] << endl;
  401. }
  402. cout << endl;
  403. return true;
  404. } else {
  405. return false;
  406. }
  407. }
  408. HdrImage HdrImageStack::get_hdr_image(const InverseResponseFunction &invRespFunc) {
  409. if (m_images.size() == 0) {
  410. return HdrImage();
  411. }
  412. HdrImage output;
  413. output.m_image_data.resize(m_images[0].m_image_data.size());
  414. output.m_width = m_images[0].m_width;
  415. output.m_height = m_images[0].m_height;
  416. output.m_components = m_images[0].m_components;
  417. unsigned int bytes_size = m_images[0].m_image_data.size();
  418. unsigned int images_size = m_images.size();
  419. // precompute log of exposure times
  420. vector<double> log_exposures;
  421. log_exposures.resize(images_size);
  422. for (unsigned int k = 0; k < images_size; k++) {
  423. log_exposures[k] = log(m_images[k].get_exposure_time());
  424. }
  425. for (unsigned int i = 0; i < bytes_size; i++) {
  426. double scale_sum = 0.0;
  427. double output_val = 0.0;
  428. for (unsigned int k = 0; k < images_size; k++) {
  429. int val = m_images[k].m_image_data[i];
  430. double scale = 1.0 - fabs((double)(128.0 - val) * (1.0 / 128.0));
  431. output_val += scale * (invRespFunc.lookup(val) - log_exposures[k]);
  432. scale_sum += scale;
  433. }
  434. output.m_image_data[i] = output_val / scale_sum;
  435. }
  436. return output;
  437. }
  438. static bool compare_image_by_exposure(const Image &a, const Image &b) {
  439. return a.get_exposure_time() < b.get_exposure_time();
  440. }
  441. void HdrImageStack::sort_by_exposure() {
  442. std::sort(m_images.begin(), m_images.end(), compare_image_by_exposure);
  443. }